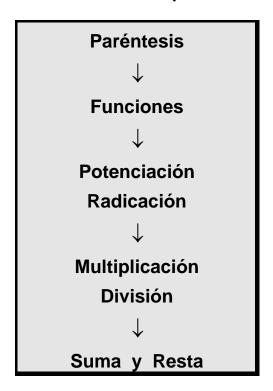


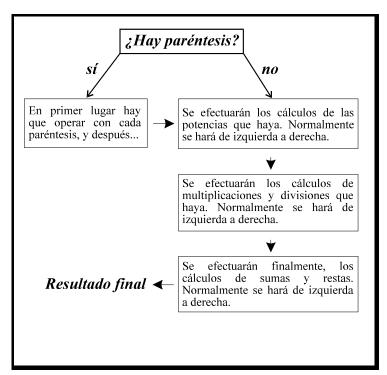
Iteración

Notación Científica Sistema Binario El número de oro Espirales Potencias y Radicales

Potencias y raíces

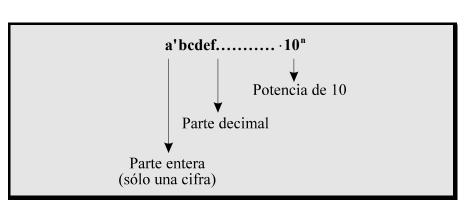
Prioridad de las operaciones





La notación científica

NOTACIÓN CIENTÍFICA



Es decir, un número en notación científica se escribe como el producto de un número comprendido entre 1 y 10, por una potencia de 10.

<u>Operación</u>	<u>Pantalla</u>
15625 × 55040000	8'6·10 ¹¹
0'000005 × 0'000046	$2'3 \cdot 10^{-10}$

Nomenclatura de las potencias de 10

A veces las unidades pueden resultar inadecuadas simplemente por su tamaño. La distancia entre ciudades no se expresa en metros, ni la masa de un electrón en Kg. En estos casos, se recurre al uso de múltiplos o submúltiplos de la unidad. Para ello se utiliza el sistema métrico decimal.

En la siguiente tabla se reflejan los prefijos más corrientes y su equivalencia. Estos prefijos son aplicables a todas las magnitudes físicas

En Astronomía se utiliza como unidad el año-luz que es el espacio que recorre la luz viajando a una velocidad constante de 300.000 km/seg durante un año. Sabiendo que $e = v \cdot t$ deducir el siguiente valor:

 $1a\tilde{n}o luz = 9'46 \cdot 10^{12} km$

Prefijo	Símbolo	Equivalencia
exa	Е	10^{18}
peta	P	10^{15}
tera	T	10^{12}
giga	G	10 ⁹
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
mili	m	10^{-3}
micro	μ	10 ⁻⁶
nano	n	10^{-9}
pico	р	10^{-12}

Longitudes, pesos, tiempos y temperaturas medibles en el mundo real

	Máxima	Mínima
Longitud	Radio del Universo = $1'42 \cdot 10^{23}$ km	Radio del electrón = $2'82 \cdot 10^{-15}$ m
Pesos	Masa total del Universo conocido $\approx 7'8 \cdot 10^{55} \text{ kg}$	Masa del electrón = $9'1 \cdot 10^{-31}$ kg
Tiempos	Edad calculada para el Universo $\approx 6'32 \cdot 10^{17} \text{ seg}$	Respecto al Big Bang $\approx 10^{-43}$ seg

Actualmente las medidas del Universo caben en el intervalo $\left[10^{-99},10^{99}\right]$

Order	Orden de magnitud de algunas medidas de nuestro Universo (en cm.)								
1018	Distancia a las estrellas más cercanas.								
10 ¹³	Distancia al Sol.								
1010	Distancia a la Luna.								
10°	Diámetro de la Tierra.								
10^{6}	Distancia entre dos pueblos vecinos.								
10 ⁵	Un buen paseo.								
10 ⁴	Altura de un cerro pequeño.								
10 ³	Ancho de una piscina.								

Orde	Orden de magnitud de algunas medidas de nuestro Universo (en cm.)								
10^3	Ancho de una piscina								
10^2	Diámetro de una mesa camilla.								
10 ¹	Un palmo.								
10^{0}	Un centímetro.								
10^{-1}	Espesor de un sobre.								
10^{-2}	Espesor de un hilo.								
10^{-5}	Longitud de onda de los rayos visibles.								
10^{-8}	Longitud de onda de los rayos X.								

Sistema Decimal, Sistema Binario y Sistema Hexadecimal

Un ordenador constituye un dispositivo electrónico *digital*, cuya palabra está relacionada con el término *dígito* que significa *dedo*. La etimología de esta palabra proviene de la época en que nuestros antepasados tenían que contar con los dígitos o dedos las piezas que cazaban. Por la necesidad que tenía el *Homo Sapiens* de utilizar los 10 dedos de las manos para contar surgió lo que conocemos como el *sistema numérico decimal* compuesto por diez dígitos o números que van del 0 al 9.

El sistema en base 10 (Sistema Decimal) tiene como cifras disponibles desde el 0 hasta el 9, y el valor de posición es una potencia de 10.

El número 3548 en el sistema decimal se obtiene de la siguiente manera:

Pero en el mundo de las matemáticas el *Sistema Decimal* no es el único que existe para realizar cálculos simples o complejos. Coexisten, además, otros sistemas numéricos, entre los que se encuentran el *Sistema Binario* de base 2 y el *Sistema Hexadecimal* de base 16.

Aunque el sistema decimal es muy fácil de usar por los humanos, el *Sistema Binario* fue el escogido por los ingenieros informáticos para el funcionamiento de los ordenadores, porque era más fácil para el sistema electrónico de la máquina distinguir y manejar *solamente dos dígitos*, *el 0 y el 1* que componen el sistema numérico binario, en lugar de los diez dígitos (del 0 al 9), que constituyen el sistema decimal. En el *Sistema Binario* el valor de posición es una potencia de 2.

Expresar los números 145 y 200 en base 2 (Binario).

Una de las desventajas de la numeración binaria es que requiere números relativamente largos y que resultan confusos para ser manejados por personas. Para facilitar este manejo, se ha recurrido al sistema de numeración en base 16 o **Hexadecimal**. En base 16 disponemos de 16 cifras: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, y F (las letras tienen los valores decimales de 10 en adelante) y el valor de posición es una potencia de 16. De hecho, 16 es una potencia de 2 (2⁴).

Los números binarios de cuatro cifras (desde 0 a 1111 que corresponden a los números en el sistema decimal desde el 0 al 15) se pueden representar con una sola cifra hexadecimal. Esto hace que sean más fáciles de leer para los humanos y más fácil operar con ellos. Con la práctica, es relativamente fácil memorizar las equivalencias entre números binarios y hexadecimales y convertir entre uno y otro sistema sin dificultades con una tabla como la siguiente:

Decimal	Binario	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7

Decimal	Binario	Hexadecimal
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Expresar los números 1450 y 3548 en base 16 (Hexadecimal).

La numeración hexadecimal es frecuente en todo lo referente a la imagen digital. Los colores Rojo (Red), Verde (Green) y Azul (Blue) (RGB) se suelen especificar mediante un código hexadecimal de 6 cifras. Cada par de cifras, de izquierda a derecha, representa el componente de color Rojo (cifras 1ª y 2ª), Verde (cifras 3ª y 4ª) y Azul (cifras 5ª y 6ª). Cada uno de los componentes puede adoptar 256 niveles, desde 00 (mínimo de color) hasta FF (máximo de color). El color negro se representa por 000000, el color blanco por FFFFFF, el color azul puro se representa por 0000FF, el color verde puro por 00FF00 y el color rojo puro por FF0000. Un amarillo muy claro es FFFFCC, o sea, que el rojo y el verde están al máximo y el azul bastante alto, lo que da un resultado próximo al blanco FFFFFF.

Todo lo anterior lo podemos representar mediante el siguiente esquema:

Nombre	RGB Decimal	RGB Hexadecimal	<u>Color</u>
Rojo	[255,0,0]	FF0000	
Verde	[0,255,0]	00FF00	
Azul	[0,0,255]	0000FF	
Negro	[0,0,0]	000000	
Naranja	[255,165,0]	FFA500	
Amarillo	[255,255,0]	FFFF00	
Gris claro	[200,200,200]	C8C8C8	

> ¿Cuántos colores diferentes se pueden representar mediante la notación Hexadecimal?

Una imagen digital se compone de puntos o píxeles dispuestos en filas y columnas. En función del tipo de imagen digital, el punto puede ser blanco o coloreado.

La calidad de una imagen depende del número de puntos utilizados para crearla. Este valor se conoce como resolución de la imagen digital. La resolución se mide en puntos por pulgada (ppp) y refleja simplemente el número de puntos utilizados para componer una imagen. Por ejemplo, en una imagen con una resolución de 300 ppp, cada pulgada de la imagen (una pulgada son 2,54 cm) contiene 300 puntos. Dicho de otro modo, cada punto o píxel que compone la imagen ocupa 1/300 de pulgada. Esto implica que una imagen de baja resolución (por ejemplo, 50 ppp) puede aparecer moteada, mientras que es probable que una imagen de mayor resolución tenga una apariencia correcta.

Una imagen de color auténtico o verdadero es una imagen de 24 bits (3 x 8 bits = 24 bits) compuesta de puntos rojos, verdes y azules, cada uno de los cuales puede mostrar un valor entre 256 posibles. Una imagen digital de color auténtico es lo más parecido a una imagen de calidad fotográfica, ya que puede mostrar un color entre $256^3 = 16777216$ de tonos posibles.

Bits y Bytes

Todos los programas, instrucciones, textos y órdenes que introducimos en el ordenador éste las recibe en código binario como una cadena de ceros y unos. Cada **0** y cada **1** representa un **bit** de información. La palabra *Bit* constituye el acrónimo de **B**inary Digit, o sea, dígito binario).

El *bit* (b) es la unidad mínima de información empleada en informática, en cualquier dispositivo digital, o en la teoría de la información. Con él, podemos representar dos valores cualquiera, como por ejemplo: verdadero o falso, abierto o cerrado, apagado o encendido, blanco o negro, norte o sur, masculino o femenino, amarillo o azul, etc. Basta con asignar cada una de las cifras (0 ó 1) a cada uno de los estados.

Para formar cada carácter alfanumérico, es decir una letra, número o signo, los ingenieros informáticos, después de realizar muchas pruebas, optaron por combinar ocho bits o cadenas de ceros y unos para formar un *octeto* al que denominaron *Byte* (B). A cada carácter alfanumérico le asignaron un byte de información y estructuraron 256 valores binarios distintos en un código que llamaron ASCII (American Standard Code for Information Interchange). Un carácter tendrá una cantidad de 8 bits, que es igual a decir que ocupa un byte de memoria.

$$1 \text{ Byte} = 2^3 \text{ bits} = 8 \text{ bits}$$

El término *Byte* puede almacenar un número entero entre 0 (00000000) y 256 (2^8 :11111111). En el código ASCII los valores binarios entre 0 y 31 corresponden a instrucciones, los valores entre 32 y 127 corresponden al alfabeto numérico y los valores entre 128 y 255 corresponden a caracteres de otros idiomas y signos menos convencionales. En la actualidad la tabla del código ASCII ha sido desplazadas por la tabla UNICODE, con capacidad para 65536 caracteres (con 16 cifras o bits obtendríamos $2^{16} = 65536$ valores).

Dec	Hex	Bin									
0	0	00000000	16	10	00010000	32	20	00100000	48	30	00110000
1	1	00000001	17	11	00010001	33	21	00100001	49	31	00110001
2	2	00000010	18	12	00010010	34	22	00100010	50	32	00110010
3	3	00000011	19	13	00010011	35	23	00100011	51	33	00110011
4	4	00000100	20	14	00010100	36	24	00100100	52	34	00110100
5	5	00000101	21	15	00010101	37	25	00100101	53	35	00110101
6	6	00000110	22	16	00010110	38	26	00100110	54	36	00110110
7	7	00000111	23	17	00010111	39	27	00100111	55	37	00110111
8	8	00001000	24	18	00011000	40	28	00101000	56	38	00111000
9	9	00001001	25	19	00011001	41	29	00101001	57	39	00111001
10	A	00001010	26	1A	00011010	42	2A	00101010	58	3A	00111010
11	В	00001011	27	1B	00011011	43	2B	00101011	59	3B	00111011
12	C	00001100	28	1C	00011100	44	2C	00101100	60	3C	00111100
13	D	00001101	29	1D	00011101	45	2D	00101101	61	3D	00111101
14	E	00001110	30	1E	00011110	46	2E	00101110	62	3E	00111110
15	F	00001111	31	1F	00011111	47	2F	00101111	63	3F	00111111

Dec	Hex	Bin	Dec	Hex	Bin	Dec	еН	[ex	Bin	Dec	Hex	Bin
64	40	01000000	80	50 (01010000	96	6	60 C	01100000	112	70	01110000
65	41	01000001	81	51 (01010001	97	1	51 C	1100001	113	71	01110001
66	42	01000010	82	52 (01010010	98	1	$62 \mathrm{C}$	01100010	114	72	01110010
67	43	01000011	83	53 (01010011	99	6	53 C	01100011	115	73	01110011
68	44	01000100	84	54 (01010100	100	$ \epsilon$	54 C	01100100	116	74	01110100
69	45	01000101	85	55 (01010101	101	1	55 C	01100101	117	75	01110101
70	46	01000110	86	56 (01010110	102	$2 \mid \epsilon$	66 C	01100110	118	76	01110110
71	47	01000111	87	57 (01010111	103	3 6	57 C	01100111	119	77	01110111
72	48	01001000	88	58 (01011000	104	1 6	58 C	01101000	120	78	01111000
73	49	01001001	89	59 (01011001	105	5 6	59 C	01101001	121	79	01111001
74	4A	01001010	90	5A (01011010	106	6	\mathbf{A}	01101010	122	7A	01111010
75	4B	01001011	91	5B (01011011	107	7 6	6B	01101011	123	7B	01111011
76	4C	01001100	92	5C (01011100	108	3 6	5C	01101100	124	7C	01111100
77	4D	01001101	93	5D (01011101	109	6	5D	01101101	125	7D	01111101
78	4E	01001110	94	5E (01011110	110	$ \epsilon$	6E	01101110	126	7E	01111110
79	4F	01001111	95	5F (01011111	111	6	6F 0	01101111	127	7F	01111111
Dec	Hex	Bin	Dec	Hex	Bin	De	ec [Hex	Bin	Dec	Hex	
128	80	10000000	144	90	10010000	16	0	A0	10100000	176		10110000
129	81	10000001	145	91	10010001	16	51	A 1	10100001	177	B1	10110001
130	82	10000010	146	92	10010010	16	52	A2	10100010	178	B2	10110010
131	83	10000011	147	93	10010011	16	53	A3	10100011	179	B3	10110011
132	84	10000100	148	94	10010100	16	54	A4	10100100	180	B4	10110100
133	85	10000101	149	95	10010101	16	55	A5	10100101	181	В5	10110101
134	86	10000110	150	96	10010110	16	66	A6	10100110	182	B6	10110110
135	87	10000111	151	97	10010111	16	57	A7	10100111	183	В7	10110111
136	88	10001000	152	98	10011000	16	8	A8	10101000	184	B8	10111000
137	89	10001001	153	99	10011001	16	59	A9	10101001	185	B9	10111001
138	8A	10001010	154	9A	10011010	17	0	AA	10101010	186	BA	10111010
139	8B	10001011	155	9B	10011011	17	1	AB	10101011	187	BB	10111011
140	8C	10001100	156	9C	10011100	17	' 2	AC	10101100	188	BC	10111100
141	8D	10001101	157	9D	10011101	17	73	AD	10101101	189	BD	10111101
142	8E	10001110	158	9E	10011110	17	4	ΑE	10101110	190	BE	10111110
143	8F	10001111	159	9F	10011111	17	75	AF	10101111	191	BF	10111111
Dec	Hex	Bin	Dec	Hex	Bin	D	ec	Hex		Dec	He	x Bin
192		11000000	208		11010000	22		E0	11100000	240) F0	11110000
193		11000001	209		11010001	22		E1	11100001	241		
194		11000010	210		11010010		26	E2	11100010	242		
195		11000011	211		11010011	22		E3	11100011	243		
196		11000100	212		11010100	22		E4	11100100	244		
197		11000101	213		11010101	22		E5	11100101	245		
198		11000110	214		11010110	23		E6	11100110	246		
199		11000111	215		11010111	23		E7	11100111	247		
200		11001000	216		11011000	23		E8	11101000	248		
201		11001001	217		11011001	23		E9	11101001	249		
202		11001010	218		11011010	23			11101010	250		
203		11001011	219		11011011	23	35			251		11111011
204		11001100	220		11011100	23			11101100	252	P FC	
205		11001101	221		11011101	23			11101101	253		11111101
206		11001110	222		11011110			EE		254		
207	CF	11001111	223	DF	11011111	23	39	EF	11101111	255	FF	11111111

Los caracteres de la tabla ASCII se obtienen pulsando la tecla ALT + el número en Decimal. Por ejemplo: si pulsas la combinación de teclas ALT+126 se escribirá el caracter ~

DEC	HEX	OCT	CHAR	DEC	HEX	OCT	СН	DEC	HEX	OCT	СН	DEC	HEX	OCT	СН
0	0	000	NUL	32	20	040		64	40	100	@	96	60	140	`
1	1	001	SOH	33	21	041	ļ	65	41	101	Α	97	61	141	а
2	2	002	STX	34	22	042	"	66	42	102	В	98	62	142	b
3	3	003	ETX	35	23	043	#	67	43	103	С	99	63	143	С
4	4	004	EOT	36	24	044	\$	68	44	104	D	100	64	144	d
5	5	005	ENQ	37	25	045	%	69	45	105	Е	101	65	145	е
6	6	006	ACK	38	26	046	&	70	46	106	F	102	66	146	f
7	7	007	BEL	39	27	047	'	71	47	107	G	103	67	147	g
8	8	010	BS	40	28	050	(72	48	110	H	104	68	150	h
9	9	011	TAB	41	29	051)	73	49	111	1	105	69	151	İ
10	Α	012	LF	42	2A	052	*	74	4A	112	J	106	6A	152	j
11	В	013	VT	43	2B	053	+	75	4B	113	K	107	6B	153	k
12	Ç	014	FF	44	2C	054		76	4C	114	L	108	6C	154	I
13	D	015	CR	45	2D	055	- 4	77	4D	115	M	109	6D	155	m
14	E	016	SO	46	2E	056	7/5	78	4E	116	Ň	110	6E	156	n
15	F	017	SI	47	2F	057	1	79	4F	117	0	111	6F	157	0
16	10	020	DLE	48	30	060	0	80	50	120	80	112	70	160	р
17	11	021	DC1	49	31	061	1	81	51	121	Q	113	71	161	q
18	12	022	DC2	50	32 33	062 063	2 3	82	52	122	R	114	72 73	162 163	r
19	13	023	DC3	51				83	53	123	S T	115			S
20 21	14 15	024 025	DC4 NAK	52 53	34 35	064 065	4 5	84 85	54 55	124 125	ΰ	116 117	74 75	164 165	t u
22	16	025	SYN	54	36	066	6	86	56	126	٧	118	76	166	۷
23	17	027	ETB	55 55	37	067	7	87	57	127	W	119	77	167	w
24	18	030	CAN	56	38	070	8	88	58	130	X	120	78	170	X
25	19	031	EM)	57	39	071	9	89	59	131	Ŷ	121	79	171	ŷ
26	1A	032	SUB	58	3A	072	:	90	5A	132	ż	122	7A	172	y Z
27	1B	033	ESC	59	3B	073		91	5B	133	[123	7B	173	{
28	10	034	FS	60	3C	074	΄ <	92	5C	134	ì	124	7C	174	i l
29	1D	035	GS	61	3D	075	=	93	5D	135	i	125	7D	175	}
30	1E	036	RS	62	3E	076	≻	94	5E	136	٧	126	7E	176	~
31	1F	037	ÚS	63	3F	077	?	95	5F	137	_	127	7F	177	DEL

Si escribimos en el teclado del ordenador la frase *muy bien gracias* (letras minúsculas), cada una de las letras, así como el espacio entre palabras, el ordenador las transforma en unos y ceros correspondientes cada una de ellas a un carácter del código ASCII. El carácter correspondiente al espacio en blanco (al pulsar la barra espaciador) está representado a continuación en negrita.

01101101 01110101 01111001 **00100000** 01100010 01101001 01100101 01101110 **00100000** 01100111 01110010 01100001 01100011 01101001 01100001 01110011

Con la ayuda de los caracteres de la tabla ASCII escribe la frase Estudiar es divertido.

Sin embargo, un texto relativamente breve puede ocupar varios miles de bytes, por lo que es necesario utilizar unidades de orden superior a los bytes. La unidad de orden superior utilizada en primer lugar fue el Kilobyte (KB), equivalente a 1.024 bytes ó 2¹⁰ bytes. La siguiente unidad de orden superior fue el Megabyte (MB), equivalente a 2²⁰ bytes, o lo que es lo mismo, 1024 KB. En la actualidad lo habitual es hablar de capacidades del orden de los Gigabytes (GB), que equivalen a 2³⁰ bytes, o sea, 1024 MB y de los Terabytes (TB), que equivalen a 2⁴⁰ bytes, o sea, 1024 GB.

Los prefijos Kilo, Mega, Giga, Tera, etc. <u>se consideran potencias de 1024 en lugar de potencias de 1000</u>. Esto es así porque 1024 es la potencia de 2 (2¹⁰) más cercana a 1000. Kilo viene del griego χίλιοι que significa *mil, Mega* viene del griego μέγας que significa *gran, Giga* viene del griego γίγας que significa *gigante* y *Tera* viene del griego τέρας que significa *monstruo*. En el año 1998, el **IEC** (*Comisión Internacional de Electrotecnia*) creó un nuevo sistema de prefijos para referir múltiplos binarios. El padrón de prefijos del IEC especifica que los prefijos del S.I. (sistema internacional de unidades) deben usarse únicamente para múltiplos en base 10, y no en base 2.

			Prefij	os IEC
Nombre	Abreviatura	Bytes	Nombre	Abreviatura
Kilobyte	KB	$2^{10} = 1024 \text{ B}$	Kibibyte	KiB
Megabyte	MB	$2^{20} = 1024 \text{ KB}$	Mebibyte	MiB
Gigabyte	GB	$2^{30} = 1024 \text{ MB}$	Gibibyte	GiB
Terabyte	ТВ	$2^{40} = 1024 \text{ GB}$	Tebibyte	TiB
Petabyte	PB	$2^{50} = 1024 \text{ TB}$	Pebibyte	PiB
Exabyte	EB	$2^{60} = 1024 \text{ PB}$	Exbibyte	EiB

Internet. Transmisión de datos

La velocidad de transmisión de datos es simplemente el número de **bits** transmitidos por segundo (bps) cuando se envía un flujo continuo de datos, y el Ancho de Banda expresa la cantidad máxima de datos que pueden ser transmitidos en un tiempo determinado (en las redes se expresa en bps).

Para poder enviar y recibir datos necesitamos un *Módem* (*modulador* y *remodulador*, es decir, transforma las series de unos y ceros, que proporciona el ordenador para transmitir, en señales de tipo analógico, aptas para viajar por los cables o líneas telefónicas, y viceversa) o un *Router* (*dispositivo para interconexión de redes de ordenadores*).

El almacenamiento o tamaño de los archivos se especifica en bytes (Kilobytes, Megabytes, Gigabytes, etc.) y los navegadores o los programas de descarga de archivos especifican la velocidad en kilobytes por segundo.

Cada byte se compone de 8 bits, que son la unidad mínima de información (un 0 ó un 1). Así, para convertir kilobits a kilobytes no hay más que dividir por 8, lo mismo que habría que hacer con las velocidades de transmisión: 256 kbits por segundo equivalen a 32 Kbytes por segundo. Con esa velocidad de transmisión de datos, para descargar un Megabyte hay que emplear 32 segundos, sin olvidar que un Megabyte son 1.024 Kilobytes

Si contratamos una línea ADSL de 1 Mb, tendremos $1\text{Mb} \times 1024 = 1024 \text{Kb} = \frac{1024}{8} \text{KB} = 128 \text{KB}$ (ojo a la diferencia entre Kb y KB). El ordenador recibirá datos (descarga) a una velocidad máxima de $\frac{1024}{8} = 128 \text{KB}$ por segundo (128 KB/s) ó 128 kilo*bytes* por segundo, y los enviará (subida) a

una velocidad máxima de $\frac{300}{8}$ = 37'5 KB/s ó 37'5 kilo*bytes* por segundo (ojo a la diferencia entre

bit y byte), cifras que además nunca se alcanzarán porque los protocolos de transmisión de información de Internet necesitan transmitir datos internos además de los datos "reales" que tú recibes o transmites. Para aproximarse más al rendimiento real de una conexión, se suelen dividir los Kilobits entre 9 e incluso entre 12, siendo 10 la media más aceptada. En general, una regla bastante acertada para calificar de buena una conexión a Internet mediante ADSL es que alcance con regularidad el 80% de la velocidad máxima.

Si contratamos una línea ADSL de 3 Mb, tendremos $3\text{Mb} \times 1024 = 3072 \text{Kb} = \frac{3072}{8} \text{KB} = 384 \text{KB}$.

El ordenador recibirá datos (descarga) a una velocidad máxima de $\frac{3072}{8}$ = 384 KB por segundo (384 KB/s) ó 384 kilo*bytes* por segundo, y los enviará (subida) a una velocidad máxima de $\frac{300}{8}$ = 37′5 KB/s ó 37′5 kilo*bytes* por segundo.

Si, por ejemplo, un archivo se está descargando a 25 KB/s, sabremos que se están descargando 25·1024 = 25600 bytes/s, es decir 25600 caracteres cada segundo. Actualmente, las ofertas de conexión a internet por cable o ADSL varían desde 1 Mb en adelante.

Un disco duro de 500 GB puede contener hasta 500 Gigabytes de datos.

$$500 \, \text{GB} = 500 \cdot 1024 \, \text{MB} = 500 \cdot 1024^2 \, \text{KB} = 500 \cdot 1024^3 \, \text{bytes} = 536.870.912.000 \, \text{bytes}$$

Ejemplos de operaciones con potencias

- 1) Expresa en notación científica estas cantidades:
 - a) 2800000000000000
 - b) 0'000000045
 - c) 4'2 TB (TeraBytes) en bits

Soluciones

- a) $2'8 \cdot 10^{14}$
- b) $4'5 \cdot 10^{-8}$

c)
$$4'2 \text{ TB} = 4'2 \cdot 2^{10} \text{ GB} = 4'2 \cdot 2^{20} \text{ MB} = 4'2 \cdot 2^{30} \text{ KB} = 4'2 \cdot 2^{40} \text{ Bytes}$$

 $1 \text{ Byte} = 2^3 \text{ bits} \implies 4'2 \cdot 2^{40} \text{ Bytes} = 4'2 \cdot 2^{40} \cdot 2^3 \text{ bits} = 4'2 \cdot 2^{43} \text{ bits} = 3'694359069 \cdot 10^{13} \text{ bits}$

2) Si un ordenador tiene un disco duro de 100 Terabytes (100 TB) ¿Cuántos GB son? ¿Cuántos MB son? ¿Cuántos KB?

Solución

$$100 \text{ TB} = 100 \cdot 2^{10} \text{ GB} = 100 \cdot 2^{20} \text{ MB} = 100 \cdot 2^{30} \text{ KB}$$

3) ¿Cuánto tiempo tardará en descargarse un archivo de 700 MB desde un servidor de Internet si la velocidad de descarga es de 150 KB/s? ¿Y si ocupa 1'36 GB? ¿Y si ocupa 4'37 GB?

Solución

$$700 \, \text{MB} = 700 \cdot 2^{10} \, \text{KB} \qquad \frac{700 \cdot 2^{10} \, \text{KB}}{150 \, \text{KB/seg}} = 4778'6666 \, \text{seg} \qquad \frac{4778'6666 \, \text{seg}}{3600 \, \text{seg/hora}} = 1'3274 \, \text{horas}$$

$$1'36 \, \text{GB} = 1'36 \cdot 2^{20} \, \text{KB} \qquad \frac{1'36 \cdot 2^{20} \, \text{KB}}{150 \, \text{KB/seg}} = 9507'0890 \, \text{seg} \qquad \frac{9507'0890 \, \text{seg}}{3600 \, \text{seg/hora}} = 2'6408 \, \text{horas}$$

$$4'37 \, \text{GB} = 4'37 \cdot 2^{20} \, \text{KB} \qquad \frac{4'37 \cdot 2^{20} \, \text{KB}}{150 \, \text{KB/seg}} = 32855'3813 \, \text{seg} \qquad \frac{32855'3813 \, \text{seg}}{3600 \, \text{seg/hora}} = 9'1264 \, \text{horas}$$

- 4) ¿Cuánto vale n para que se verifique cada igualdad?
 - a) $0'000000235 = 2'35 \cdot 10^n$

Soluciones

a)
$$n = -7$$
 b) $n = 14$

5) La distancia del Sol a Plutón es de 5'9·10⁻⁴ años luz y a la estrella Sirio de 8'26 años luz. Expresa estas distancias en Km. dando los resultados en notación científica, y halla la proporción entre ellos.

Solución

$$1 \text{ año luz} = 3 \cdot 10^5 \frac{\text{km}}{\text{seg}} \times 365 \frac{\text{días}}{\text{año}} \times 24 \frac{\text{horas}}{\text{día}} \times 60 \frac{\text{min utos}}{\text{hora}} \times 60 \frac{\text{segundos}}{\text{min uto}} = 9'4608 \cdot 10^{12} \text{ km}$$

Sol – Plutón =
$$5'9 \cdot 10^{-4} \cdot 9'4608 \cdot 10^{12} = 5'5619 \cdot 10^{9} \text{ km}$$

Sol – Sirio =
$$8'26 \cdot 9'4608 \cdot 10^{12} = 7'8146 \cdot 10^{13} \text{ km}$$

$$\frac{\text{Sol} - \text{Sirio}}{\text{Sol} - \text{Plut\'on}} = \frac{7'8146 \cdot 10^{13}}{5'5619 \cdot 10^9} = 14050$$

La distancia del Sol a la estrella Sirio es 14050 veces la distancia de Sol a Plutón.

6) Las ruedas delanteras de una locomotora tienen un radio de 0'45 m y las traseras 0'65 m. ¿Cuántas vueltas darán las primeras mientras las segundas dan 2600 vueltas?

<u>Solución</u>

$$2\pi \cdot 0'45 \cdot x = 2\pi \cdot 0'65 \cdot 2600 \implies x = \frac{2\pi \cdot 0'65 \cdot 2600}{2\pi \cdot 0'45} = 3755'55 \text{ vueltas}$$

7) Suponiendo la Tierra esférica y de volumen 1'1·10¹²km³, calcular su radio y su superficie.

$$\left(V_T = \frac{4}{3} \pi R_T^3 \quad y \quad S_T = 4\pi \pi_T^2 \right)$$

Solución

$$V_{T} = \frac{4}{3}\pi R_{T}^{3} \qquad 1'1 \cdot 10^{12} = \frac{4}{3}\pi R_{T}^{3} \qquad R^{3} = \frac{1'1 \cdot 10^{12} \cdot 3}{4\pi} \implies R = \sqrt[3]{\frac{1'1 \cdot 10^{12} \cdot 3}{4\pi}} = 6403'7547 \text{ km}$$

$$S_{T} = 4\pi R_{T}^{2} \qquad S_{T} = 4\pi 6403'7547^{2} = 515322659'3 \text{ km}^{2}$$

8) Expresar el número 234 en base 2 y en base 16.

Solución

$$234_2 = 11101010$$
 $234_{16} = EA$

9) Sea $f = 6'24 \cdot 10^{-3}$, $g = 3'15 \cdot 10^4$ y $h = -2'8 \cdot 10^7$. Calcular las siguientes expresiones expresando los resultados en notación científica y comprobar los resultados con la calculadora.

$$a) f + g$$

a)
$$f+g$$
 b) $f \cdot h$ c) $\frac{f}{h}$ d) $f \cdot h-g$ e) $f(g+h)$ f) $f+g \cdot h$ g) $\frac{f+g}{g-h}$

$$\mathbf{f)} \ \mathbf{f} + \mathbf{g} \cdot \mathbf{h}$$

g)
$$\frac{\mathbf{f} + \mathbf{g}}{\mathbf{g} - \mathbf{h}}$$

h)
$$\frac{f(g-h)}{gh(f-h)}$$
 i) f^2-g^2 j) $\frac{h-g^2}{(f+g)^2}$

$$i) f^2 - g^2$$

$$j) \frac{h-g^2}{(f+g)^2}$$

Soluciones

a)
$$f + g = 6'24 \cdot 10^{-3} + 3'15 \cdot 10^4 = 3'15 \cdot 10^4$$

b)
$$f \cdot h = 6'24 \cdot 10^{-3} \cdot (-2'8 \cdot 10^{7}) = -17'472 \cdot 10^{4} = -1'7472 \cdot 10^{5}$$

c)
$$\frac{f}{h} = \frac{6'24 \cdot 10^{-3}}{-2'8 \cdot 10^{7}} = -2'2285 \cdot 10^{-3} \cdot 10^{-7} = -2'2285 \cdot 10^{-10}$$

d)
$$f \cdot h - g = 6'24 \cdot 10^{-3} \cdot (-2'8 \cdot 10^{7}) - 3'15 \cdot 10^{4} = -1'7472 \cdot 10^{5} - 3'15 \cdot 10^{4} = -2'0622 \cdot 10^{5}$$

I.E.S. Historiador Chabás

-11-

Juan Bragado Rodríguez

e)
$$f(g+h) = 6'24 \cdot 10^{-3} [3'15 \cdot 10^4 + (-2'8 \cdot 10^7)] = 6'24 \cdot 10^{-3} (3'15 \cdot 10^4 - 2'8 \cdot 10^7) =$$

$$6'24 \cdot 10^{-3} \cdot (-2'7968500 \cdot 10^7) = -17'452344 \cdot 10^4 = -1'7452344 \cdot 10^5$$

$$f) \ f + g \cdot h = 6'24 \cdot 10^{-3} + 3'15 \cdot 10^{4} \cdot (-2'8 \cdot 10^{7}) = 6'24 \cdot 10^{-3} - 8'82 \cdot 10^{11} = -8'82 \cdot 10^{11}$$

$$g) \; \frac{f+g}{g-h} = \frac{6'24 \cdot 10^{-3} + 3'15 \cdot 10^4}{3'15 \cdot 10^4 - (-2'8 \cdot 10^7)} = \frac{6'24 \cdot 10^{-3} + 3'15 \cdot 10^4}{3'15 \cdot 10^4 + 2'8 \cdot 10^7} = \frac{3'15 \cdot 10^4}{2'8031500 \cdot 10^7} = 1'113735797 \cdot 10^{-3}$$

$$h)\; \frac{f\left(g-h\right)}{gh\left(f-h\right)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 - (-2'8\cdot 10^7))}{3'15\cdot 10^4(-2'8\cdot 10^7)(6'24\cdot 10^{-3} - (-2'8\cdot 10^7))} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)} = \frac{6'24\cdot 10^{-3}(3'15\cdot 10^4 + 2'8\cdot 10^7)}{-8'82\cdot 10^{11}(6'24\cdot 10^{-3} + 2'8\cdot 10^7)}$$

$$-7'082789114 \cdot 10^{-15}$$

i)
$$f^2 - g^2 = (6'24 \cdot 10^{-3})^2 - (3'15 \cdot 10^4)^2 = 6'24^2 \cdot 10^{-6} - 3'15^2 \cdot 10^8 =$$

$$3'89376 \cdot 10^{-5} - 9'92250000 \cdot 10^{8} = -9'92250000 \cdot 10^{8}$$

$$j) \; \frac{h-g^2}{(f+g)^2} = \frac{-2'8 \cdot 10^7 - (3'15 \cdot 10^4)^2}{(6'24 \cdot 10^{-3} + 3'15 \cdot 10^4)^2} = \frac{-2'8 \cdot 10^7 - 3'15^2 \cdot 10^8}{(3'15 \cdot 10^4)^2} = \frac{-2'8 \cdot 10^7 - 3'15^2 \cdot 10^8}{3'15^2 \cdot 10^8} = -1'0282$$

Números Irracionales. El Número de Oro

Hay tres números de gran importancia en matemáticas y que "paradójicamente" nombramos con una letra. Estos números son: Pi, el número e y el número de oro.

El número designado con la letra griega $\pi = 3'14159...$ (Pi) que relaciona la longitud de una circunferencia con su diámetro.

$$L = 2\pi \cdot R \implies \pi = \frac{L}{2R} = \frac{L}{\text{diámetro}} = 3'14159...$$

El número e = 2'71828....., inicial del apellido de su descubridor Leonhard Euler (matemático suizo del siglo XVIII) que aparece como límite de la sucesión $\left(1+\frac{1}{n}\right)^n$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2'71828....$$

▶ El número designado con letra griega $\Phi = 1'61803....$ (Fi), llamado número de oro, fue elegido por el matemático americano Mark Barr y es la inicial del nombre del escultor griego Fidias que que solía usar la relación áurea en sus esculturas.

Los tres números tienen infinitas cifras decimales y no son periódicos (sus cifras decimales no se repiten periódicamente). A estos números se les llama irracionales. Cuando se utilizan se escriben solamente unas cuantas cifras decimales.

Una diferencia importante desde el punto de vista matemático entre los dos primeros y el número de oro es que los primeros no son solución de ninguna ecuación polinómica (a estos números se les llama *trascendentes*), mientras que el número de oro sí es solución de la ecuación:

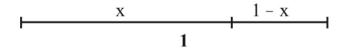
$$x^2 - x - 1 = 0 \implies x = \frac{1 + \sqrt{5}}{2} = \Phi$$

La sección áurea y el número de oro

¿Qué es la sección áurea?

La sección áurea es la división armónica de un segmento de la siguiente manera: *el segmento menor es al segmento mayor, como éste es a la totalidad*. De esta manera se establece una relación de tamaños con la misma proporcionalidad entre el todo dividido en mayor y menor. Esta proporción o forma de seleccionar proporcionalmente una línea se llama proporción áurea.

Tomemos un segmento de longitud uno y hagamos en él la división indicada anteriormente



Aplicando la proporción áurea obtenemos la siguiente ecuación que tendremos que resolver

$$\frac{1-x}{x} = \frac{x}{1} \implies 1-x = x^2 \implies x^2 + x - 1 = 0 \implies x = \frac{-1 \pm \sqrt{5}}{2}$$

Una de las soluciones de esta ecuación (la solución positiva) es $x = \frac{-1 + \sqrt{5}}{2}$.

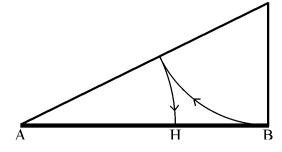
Lo sorprendente ahora es calcular el valor que se obtiene al dividir el segmento mayor entre el menor:

$$\frac{x}{1-x}$$

Efectúa tú los cálculos para el ejemplo anterior. ¿Reconoces este número?

¿Cómo dibujar la sección áurea de un segmento AB?

Partimos de un segmento AB. Para aplicarle la Sección Áurea se levanta perpendicularmente por el extremo B otro segmento que mida exactamente la mitad de AB. Se define así un triángulo rectángulo con los catetos en proporción 1:2. Pues bien, si a la hipotenusa le restamos el cateto menor y el segmento que queda lo llevamos sobre el segmento AB obtenemos AH que es la sección áurea del segmento AB. La parte menor BH es a la mayor AH como ésta es a la suma AB.

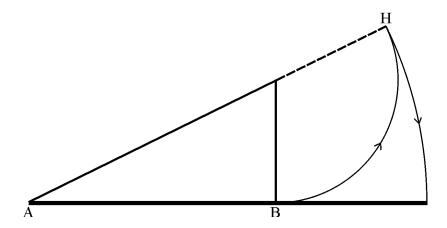


$$\frac{BH}{AH} = \frac{AH}{AB} \implies AH^2 = BH \cdot AB$$

➤ Divide un segmento de 10 cm. en dos partes que estén en la proporción áurea. Haz la construcción geométrica.

¿De qué medida es sección áurea un segmento AB?

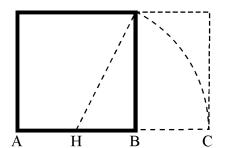
Igual de simple es hacer la operación inversa, es decir, averiguar de qué medida es sección áurea el segmento AB. Formamos el mismo triángulo que antes, pero en lugar de restar a la hipotenusa el cateto menor, se le suma. De esta manera se obtiene que AB es sección áurea de AH.



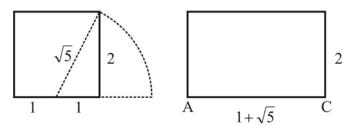
- Queremos colgar un cuadro de 120 cm. de altura en la pared de nuestra habitación de tal manera que la altura del cuadro corresponda al lado mayor
 - a) ¿Cuánto tiene que medir el cuadro de ancho para que la altura y el ancho estén en la proporción áurea? Haz el cálculo partiendo de un segmento cuyas partes estén en la proporción áurea.
 - b) Calcula la medida basándote en el dibujo anterior
- ➤ Si el cuadro tiene una altura de 3 m, ¿cuál deberá ser el ancho para que los dos lados estén en la proporción áurea?

El rectángulo áureo

Un rectángulo áureo es aquel en el que sus lados están en razón áurea. Su construcción se hace a partir de un cuadrado. Desde el punto medio de la base del cuadrado trazamos un arco de circunferencia de radio la distancia que hay desde el punto medio hasta uno de los vértices superiores del cuadrado. Este arco corta a la prolongación de la base del cuadrado en un punto. El rectángulo ampliado es áureo.



Si el lado del cuadrado vale 2 unidades, es claro que el lado mayor del rectángulo vale $1+\sqrt{5}$ por lo que la proporción entre los dos lados es $\frac{1+\sqrt{5}}{2}=1'618...=\Phi$ (nuestro número de oro).



Obtenemos así un rectángulo cuyos lados están en proporción áurea. A partir de este rectángulo podemos construir otros semejantes que, como veremos mas adelante, se han utilizando en arquitectura (Partenón, pirámides egipcias) y diseño (tarjetas de crédito, carnets, cajetillas de tabaco, etc.).

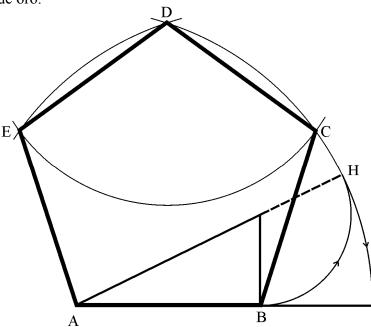
Dibujar en el cuaderno un rectángulo áureo partiendo de un cuadrado de 5 cm. de lado.

El ángulo de oro

Podemos dividir la circunferencia en dos ángulos de tal manera que la razón entre el ángulo mayor y el ángulo menor sea exactamente el número de oro. El menor de estos ángulos mide aproximadamente $137^{\circ}30'$, es decir $\frac{222^{\circ}30'}{137^{\circ}30'} = \Phi$

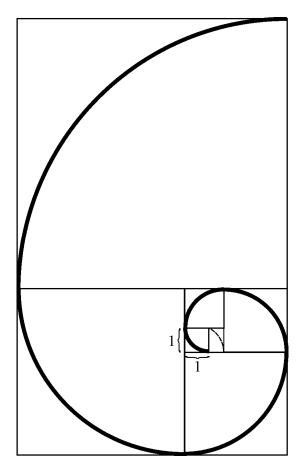
Construcción del Pentágono Regular a partir de la sección áurea

Averiguamos de qué medida es sección áurea el segmento AB que tomamos como lado del pentágono regular y comprobamos, según hemos visto en apartados anteriores, que la medida es AH. Con centro en A trazamos un arco de circunferencia de radio AH y con centro en B trazamos otro arco de circunferencia del mismo radio que el anterior. Estos dos arcos se cortan en el punto D. Con centro en D y radio el segmento AB trazamos un arco de circunferencia que corta a los dos arcos anteriores en los puntos E y C. Uniendo los puntos ABCDE obtenemos un pentágono regular, que como se observa por la construcción el cociente entre su diagonal y el lado es el número de oro.



➤ Dibujar en el cuaderno un pentágono regular de 6 cm. de lado y comprobar que el cociente entre la diagonal y el lado es el número de oro.

🖲 La Espiral de Durero y el Número de Oro

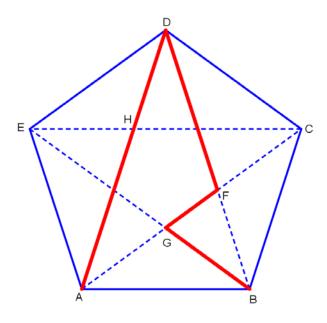


Su construcción se realiza partiendo de un cuadrado de lado unidad y dibujando un rectángulo áureo.

Pegado a este rectángulo construimos un cuadrado de lado el lado mayor del rectángulo anterior. Aparece de nuevo un rectángulo áureo, en el cual volvemos a pegar un cuadrado de lado el lado mayor del rectángulo. El proceso es reiterativo, y así obtenemos uniendo dos vértices opuestos de los sucesivos cuadrados con un arco de circunferencia, la espiral deseada.

- ➤ Dibuja la Espiral de Durero en un papel cuadriculado, tomando como medida del lado del cuadrado inicial 1 cm.
- ➤ Calcula la sucesión formada por los valores de los lados de dichos cuadrados.
- ➤ Divide dos términos consecutivos de dichos valores, siempre el mayor entre el menor. ¿Qué obtenemos al tomar cada vez más términos? ¿Reconoces ese número?

Pitágoras y el número de oro



La estrella pentagonal, pentagrama o pentágono estrellado era, según la tradición, el símbolo de los seguidores de Pitágoras. En el Pentagrama aparecen segmentos de distintas longitudes $\overline{AD}, \overline{DF}, \overline{BG}$ y \overline{GF} y todos ellos están relacionados entre sí mediante *el número de oro.*

$$\frac{\overline{AD}}{\overline{DF}} = \frac{\overline{DF}}{\overline{BG}} = \frac{\overline{BG}}{\overline{GF}} = \Phi$$

Dibuja con regla y compás un pentágono estrellado y comprueba numéricamente todos estos cocientes.

- ➤ Dibuja un pentágono estrellado como el anterior del tamaño de medio folio y calcula el cociente entre su diagonal y el lado. ¿Reconoces ese número? Repite el proceso para el pentágono que aparece invertido en el interior del que has dibujado. ¿Qué número resulta?
- ➤ Busca los cocientes entre los segmentos AD, ED, EH y HC que estén en proporción áurea.

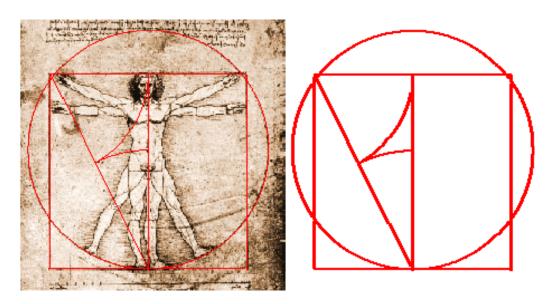
Dalí y el número de oro

El cuadro de Dalí, *Leda atómica*, pintado en 1949, sintetiza siglos de tradición matemática y simbólica, especialmente pitagórica. Se trata de una filigrana basada en la proporción áurea, pero elaborada de tal forma que no es evidente para el espectador. En el boceto de 1947 se advierte la meticulosidad del análisis geométrico realizado por Dalí basado en el pentagrama místico pitagórico.

Esta razón también la usaron en sus producciones artistas del Renacimiento. En España, en la Alhambra y en edificios renacentistas como El Escorial.

💌 El cuerpo humano y el número de oro

En relación al cuerpo humano, los griegos y los romanos estudiaron las proporciones que se consideraron armónicas. Estas proporciones las plasmó en este dibujo Leonardo da Vinci (el hombre de Vitruvio) que sirvió para ilustrar el libro La Divina Proporción de Luca Pacioli editado en 1509.



En dicho libro se describen cuales han de ser las proporciones de las construcciones artísticas. En particular, Pacioli propone un hombre perfecto en el que las relaciones entre las distintas partes de su cuerpo sean proporciones áureas.

Estirando manos y pies y haciendo centro en el ombligo se dibuja la circunferencia. El cuadrado tiene por lado la altura del cuerpo que coincide, en un cuerpo armonioso, con la longitud entre los extremos de los dedos de ambas manos cuando los brazos están extendidos y formando un ángulo de 90° con el tronco. Resulta que el cociente entre la altura del hombre (lado del cuadrado) y la distancia del ombligo a la punta de la mano (radio de la circunferencia) es el número áureo.

Hacia el año 1850, el alemán Zeysig efectuó medidas sobre miles de cuerpos humanos y encontró que estadísticamente las proporciones del cuerpo masculino, para un cuerpo sanamente desarrollado, oscilan en torno a la razón media:

$$\frac{\text{altura total (h)}}{\text{Distancia vertical entre el ombligo y la planta de los pies (n)}} = \frac{13}{8} = 1'625$$

Zeysig no solo midió la razón $\frac{h}{n}$ en los adultos, sino que también estudió su variación durante el crecimiento y observó que en los recién nacidos el ombligo divide el cuerpo en dos partes iguales, de modo que la razón $\frac{h}{n}$ tiende gradualmente hacia su valor definitivo.

Trabajo para realizar en clase

Formar grupos de 5 alumnos y realizar las siguientes mediciones:

- a) Altura de cada alumno (h).
- b) Distancia entre la planta de los pies y el ombligo (n).
- c) Distancia entre la cima del cráneo y el ombligo (m)
- > Con los datos anteriores confeccionar una tabla comola siguiente comparar resultados obtenidos entre todos los grupos.

h	n	m	$\frac{h}{n}$	<u>n</u> m

- También se ha usado en el diseño del DNI, tarjetas de crédito, en la construcción de muebles, marcos para ventanas, camas, etc. y en las cajetillas de tabaco.
 - Calcula el cociente entre el largo y el ancho de tu DNI. ¿Qué cantidad obtienes?

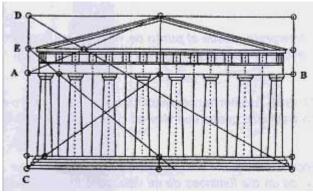
Los griegos también la usaron en sus construcciones, especialmente El Partenón, cuyas proporciones están relacionadas entre sí por medio de la razón áurea.

En la figura se puede comprobar que

$$\frac{AB}{CD} = \Phi$$

Hay más cocientes entre sus medidas que dan el número áureo, por ejemplo:

$$\frac{AC}{AD} = \Phi$$
 y $\frac{CD}{CA} = \Phi$



El Nautilus y el número de oro

La siguiente imagen es la de una concha, conocida en los arrecifes de coral del sur del Pacífico como *Nautilus pompilius*, cuyo corte transversal revela una línea de nácar que forma una perfecta espiral. Esta espiral también recibe el nombre de *espiral geométrica*, ya que mientras el ángulo de giro crece en progresión aritmética, sumando siempre la misma cantidad, el radio correspondiente crece en progresión geométrica, multiplicando siempre el radio anterior por un mismo número.

La espiral logarítmica es el único tipo de espiral que mantiene su forma al ser reescalada y aumenta su tamaño en cada cuarto de vuelta en aproximadamente 1.618034 veces el tamaño anterior. Esta cifra corresponde al *número de oro* que es el número asociado a la sucesión de Fibonacci.

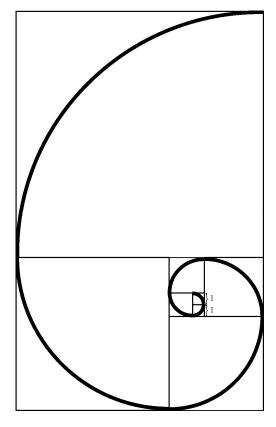
Si damos un corte transversal a la concha veremos que está formada por compartimentos separados por tabiques y comunicados por un sifón. El animal ocupa el compartimento más externo, que es de mayor tamaño. Al ir creciendo el molusco abandona el compartimento anterior y crea uno con la misma forma pero más grande y lo hace de tal manera que sus cámaras aumentan de tamaño pero su forma es invariable. Las sucesivas vueltas van aumentando en anchura, en proporción constante e invariable.

El Huevo de la gallina y el número de oro

Si dividimos la altura máxima de un huevo de gallina entre su anchura máxima vamos a obtener siempre un número que está comprendido entre el número de oro y su raíz cuadrada.

$$\sqrt{\Phi} < \frac{a}{b} < \Phi$$

La espiral de Fibonacci. La sucesión de Fibonacci y el número de oro



Comenzamos dibujando dos pequeños cuadrados de lado una unidad, que estén juntos. A partir de ahí se forma un rectángulo, cuyo lado mayor que es 2 sirve como lado de un nuevo cuadrado, el cual pegamos a los anteriores. A partir de aquí, el proceso se reitera sucesivamente, añadiendo cuadrados cuyos lados son los números de la sucesión de Fibonacci. Lógicamente, cada cuadrado tiene como lado, la suma de los lados de los dos cuadrados construidos anteriormente. Los sucesivos rectángulos que van apareciendo son los rectángulos de Fibonacci.

La espiral de Fibonacci se dibuja uniendo mediante arcos de circunferencias dos vértices opuestos de los sucesivos cuadrados obtenidos.

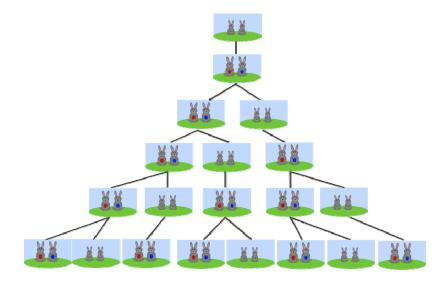
Esta espiral también recibe el nombre de *espiral geométrica*, ya que mientras el ángulo de giro crece en progresión aritmética, sumando siempre la misma cantidad, *el radio correspondiente crece en progresión geométrica*, multiplicando siempre el radio anterior por un mismo número.

La espiral logarítmica es el único tipo de espiral que mantiene su forma al ser reescalada y aumenta su tamaño en cada cuarto de vuelta en aproximadamente 1.618034 veces el tamaño anterior. Esta cifra corresponde al *número de oro* que es el número asociado a la sucesión de Fibonacci.

- L'Cuáles son los números que componen la sucesión de Fibonacci?
- ➤ Divide dos términos consecutivos de la sucesión de Fibonacci, siempre el mayor entre el menor. ¿Qué obtenemos al tomar cada vez más términos?

¿Dónde aparece la sucesión de Fibonacci?

Una pareja de conejos tarda un mes en alcanzar la edad fértil. A partir de ese momento al cabo de un mes engendra una pareja de conejos, que a su vez, tras ser fértiles engendrarán al cabo de un mes una pareja de conejos.



➤ Continúa calculando el número de parejas a lo largo de los meses y comprueba que coincide con los términos de la sucesión de Fibonacci. ¿Cuántos conejos habrá al cabo de un año?

🔹 La Biología y la sucesión de Fibonacci

Como muy bien nos enseña la filotaxia, las ramas y las hojas de las plantas se distribuyen buscando siempre recibir el máximo de luz para cada una de ellas. Por eso ninguna hoja nace justo en la vertical de la anterior. La distribución de las hojas alrededor del tallo de las plantas se produce siguiendo secuencias basadas exclusivamente en estos números.

El número de espirales en numerosas flores y frutos también se ajusta a parejas consecutivas de términos de esta sucesión: las pipas de girasol forman espirales en sentidos contrarios. El número de espirales que hay en cada sentido son términos consecutivos de la sucesión de Fibonacci, siendo las combinaciones mas frecuentes: 21 y 34, 34 y 55, 89 y 144.

Las margaritas presentan las semillas en forma de 21 y 34 espirales y cualquier variedad de piña presenta siempre un número de espirales que coincide con dos términos de la sucesión de los conejos de Fibonacci, 8 y 13; o 5 y 8. Parece que el mundo vegetal tenga programado en sus códigos genéticos del crecimiento los términos de la sucesión de Fibonacci.

También se da este crecimiento en las piñas de las coníferas y los números de espirales más habituales en cada sentido son las parejas de términos: 5 y 8, 8 y 13.

🔹 La sección áurea y la Gran Pirámide de Gizeh

La gran pirámide de Gizeh se construyó hace 4500 años aproximadamente y se incluyó entre las Siete Maravillas del Mundo, siendo la más antigua y sin embargo la única que se conserva en la actualidad.

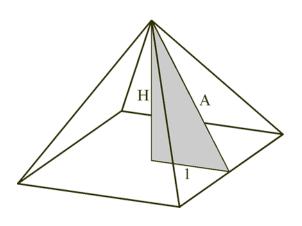
Según el historiador griego Herodoto, la Gran Pirámide de Giza se construyó de modo que la superficie de una cara fuese igual a la de un cuadrado que tuviese por lado la altura de la pirámide. Es decir: la apotema de la pirámide (la distancia que va desde la cúspide de la pirámide hasta el punto medio de una de las aristas horizontales) se eligió de modo que *la superficie de cada una de las caras triangulares fuese igual al cuadrado de la altura*. Es esto algo desde luego bastante sencillo de calcular (se pueden conseguir las medidas necesarias por el método de prueba y error, por ejemplo), y para nada implica conocer la sección áurea. ¿Entonces? ¿Por qué se verifica el esquema de arriba? La contestación es sencilla: por pura casualidad. Veamos de nuevo el esquema, pero cambiando las letras: A para la apotema y H para la altura:

Si escribimos matemáticamente lo dicho por Herodoto, tenemos:

Área de una cara =
$$\frac{base \cdot altura}{2} = \frac{2A}{2} = A = H^2$$

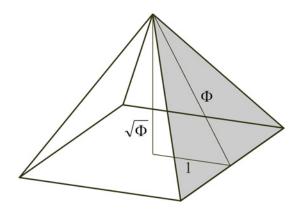
Ahora, si aplicamos el teorema de Pitágoras al triángulo rectángulo de la figura, tenemos:

$$A^2 = 1^2 + H^2 \rightarrow A^2 = 1^2 + A$$

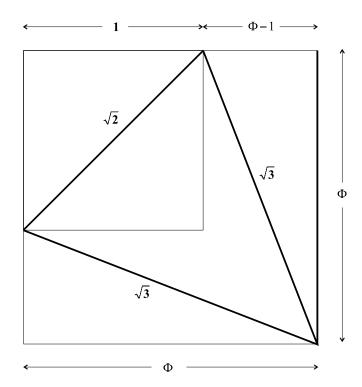


➤ Resuelve la ecuación de 2º grado. ¿Qué número obtienes?

Lo que nos dice Herodoto es que si consideramos que el lado de la base de la pirámide tiene de longitud dos, entonces su apotema vale Φ y su altura la raíz cuadrada de Φ . No está mal para una construcción de hace 4500 años, ¿verdad? Pues es cierto: las dimensiones de la Gran Pirámide de Gizeh se ajustan al esquema representado.



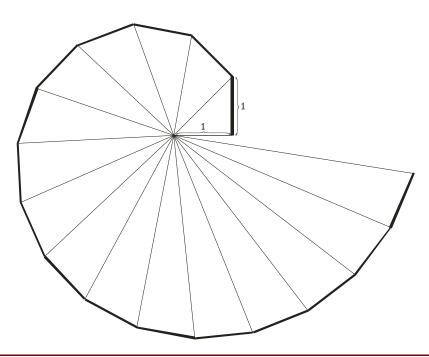
lacktriangle Relación entre los números 1, $\sqrt{2}$, $\sqrt{3}$,y lacktriangle



Otra vez una espiral

Partimos de un triángulo isósceles cuyos catetos miden la unidad. Por el extremo de la hipotenusa trazamos un segmento perpendicular de longitud la unidad y unimos su extremo con el origen de todo el dibujo. Se forma un triángulo rectángulo. Por el extremo de la hipotenusa de este triángulo rectángulo trazamos un segmento perpendicular de longitud la unidad cuyo extremo volvemos a unir con el origen.

➤ Si este proceso se repite indefinidamente calcula la sucesión de números que forman las hipotenusas de los triángulos rectángulos que componen la espiral.



Los tres problemas clásicos

Muchos problemas se han hecho famosos por su dificultad. Otros se han hecho famosos por el tiempo que llevaban planteados, o bien por la originalidad de sus planteamientos y conclusiones, o por la importancia de sus resultados.

Hay un grupo conocido con el nombre de "los tres problemas clásicos", planteados por los griegos en el siglo sexto antes de Cristo. ¡Hasta el siglo pasado no han podido ser resueltos! Los griegos se dedicaron a hacer el estudio de las construcciones con regla y compás. Con estas herramientas algunos número reales se pueden construir y otros no, y sobre ello tratan los tres problemas clásicos.

> Cuadratura del círculo

Cuadrar una figura es hallar un cuadrado equivalente, es decir, de la misma área que la figura dada. Uno de los problemas en que se ocuparon los geómetras griegos es el de construir, con regla y compás, un cuadrado que tenga la misma área que un círculo dado.

Todos los grandes matemáticos, desde la Antigüedad, se han ocupado del problema de la cuadratura del círculo. Desde los griegos, el problema quedó formulado como sigue: Dado un círculo, hallar el lado de un cuadrado de igual área que el círculo utilizando solamente regla y compás. La regla mencionada es una regla no graduada, que sólo sirve para trazar rectas. Como el área de un cuadrado de lado L es L^2 y el área de un círculo de radio r es πr^2 , se trata de encontrar un L tal que $L^2 = \pi r^2$, es decir, $L = r\sqrt{\pi}$.

Por consiguiente, el problema de la cuadratura de un círculo equivale a la construcción de un segmento de longitud $r\sqrt{\pi}$. Este segmento será construible únicamente si el número π es construible.

Ahora bien, en el siglo XIX Lindemann (1882) demostró que los números trascendentes, como el número π , no son costruibles. Desde ese momento, el viejo problema de la cuadratura del círculo quedo resuelto en sentido negativo, es decir, quedó demostrado la imposibilidad de resolver este problema.

Duplicación del cubo

Uno de los problemas de los que se ocuparon los geómetras griegos, como el de la cuadratura del círculo, fue el de obtener una construcción, con regla y compás, que proporcionara el lado de un cubo cuyo volumen fuera el doble del de un cubo dado.

Si el cubo de partida tiene de arista a, su volumen es: $V = a^3$

En un cubo cuyo volumen sea el doble del anterior y cuya arista sea \mathbf{x} se tiene:

$$2V = x^3 \implies V = \frac{x^3}{2}$$

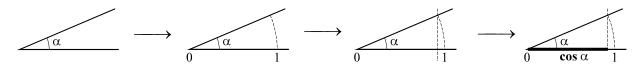
Igualando las dos expresiones tenemos: $a^3 = \frac{x^3}{2} \Rightarrow x = a \cdot \sqrt[3]{2}$

Ello equivale a obtener una construcción geométrica de un cubo cuya arista sea igual a $\sqrt[3]{2}$ veces la longitud de la arista **a** del cubo de partida.

Ahora bien, las construcciones del tipo considerado sólo proporcionan longitudes que pertenecen a una clase de números que se obtienen, esencialmente, sumando, restando, multiplicando, dividiendo y extrayendo raíces cuadradas. Como $\sqrt[3]{2}$ no pertenece a esta clase de números, *la duplicación del cubo es imposible*.

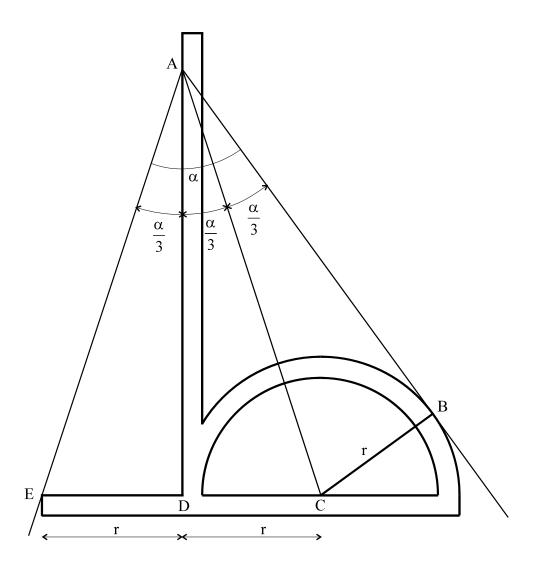
> Trisección del ángulo

Sabemos bisecar un ángulo, pero ¿sabríamos dividirlo en tres ángulos iguales? Uno de los problemas abordados por los geómetras griegos (como la duplicación del cubo y la cuadratura del círculo) es el de dividir un ángulo en tres partes iguales con regla y compás, es decir, trisecar el ángulo. Si un ángulo es construible, su coseno también lo es:



Si hubiese un método para trisecar el ángulo se podría hacer en particular con un ángulo de 60° , así que su tercera parte 20° , tendría que ser construible y por lo que se deduce de las figuras anteriores también tendría que ser construible su coseno. Pero esto es falso, porque mediante una serie de consideraciones sobre extensiones cuadráticas, se deduce que $\cos 20^{\circ}$ no es un número construible, porque la ecuación $x^3 - 3x + 1 = 0$ no tiene soluciones racionales. *Por tanto, la trisección de un ángulo es imposible en general*.

Sin embargo, es posible construir, con regla y compás, un aparato que hace posible trisectar el ángulo, como se observa en el dibujo siguiente:



Los tres ángulos son iguales por la semejanza de los triángulos rectángulos ABC, ADC y ADE.

Ejemplos de operaciones con Potencias y Radicales

Recuerda que en las Potencias se verifica:

$$a^{m} \cdot a^{n} = a^{m+n} \qquad a^{m} : a^{n} = a^{m-n} \qquad \left(a^{m}\right)^{n} = a^{m \cdot n} \qquad \left(a \cdot b\right)^{n} = a^{n} \cdot b^{n} \qquad \left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$

$$a^{-n} = \frac{1}{a^{n}} \qquad (-a)^{n} = \begin{cases} a^{n} & \text{si } n \text{ es par} \\ -a^{n} & \text{si } n \text{ es impar} \end{cases}$$

Recuerda que en los Radicales se verifica:

1) Introducir dentro del radical los factores que están fuera:

a)
$$5 \cdot \sqrt{3}$$
 b) $6 \cdot \sqrt[3]{2}$ c) $3^4 \cdot \sqrt{5}$ d) $\frac{\sqrt{9}}{5}$ e) $\frac{2}{\sqrt{3}}$

a)
$$\sqrt{3.5^2}$$
 b) $\sqrt[3]{2.6^3}$ c) $\sqrt{5.3^8}$ d) $\sqrt{\frac{9}{5^2}}$ e) $\sqrt{\frac{2^2}{3}}$

2) Extraer fuera del radical los factores que se puedan:

a)
$$\sqrt{45}$$
 b) $\sqrt{3^2 \cdot 7 \cdot 11^2}$ c) $\sqrt[3]{56}$ d) $\sqrt{8} - \sqrt{2}$ e) $\sqrt{12} + \sqrt{3}$

<u>Solución</u>

Solución

a)
$$\sqrt{3^2 \cdot 5} = 3\sqrt{5}$$
 b) $3 \cdot 11 \cdot \sqrt{7} = 33\sqrt{7}$ c) $\sqrt[3]{2^3 \cdot 7} = 2 \cdot \sqrt[3]{7}$ d) $\sqrt{2^3} - \sqrt{2} = 2 \cdot \sqrt{2} - \sqrt{2} = \sqrt{2}$
e) $\sqrt{2^2 \cdot 3} + \sqrt{3} = 2 \cdot \sqrt{3} + \sqrt{3} = 3\sqrt{3}$

3) Calcular el valor de las expresiones adjuntas extrayendo factores fuera del radical y directamente con la calculadora. a) $\sqrt{18} - \sqrt{27} + \sqrt{2}$ b) $\sqrt{5} + \sqrt{45} + \sqrt{180} - \sqrt{80}$

<u>Solución</u>

a)
$$\sqrt{3^2 \cdot 2} - \sqrt{3^3} + \sqrt{2} = 3\sqrt{2} - 3\sqrt{3} + \sqrt{2} = 4\sqrt{2} - 3\sqrt{3} = 0'4607$$

b) $\sqrt{5} + \sqrt{3^2 \cdot 5} + \sqrt{3^2 \cdot 5 \cdot 2^2} - \sqrt{2^4 \cdot 5} = \sqrt{5} + 3\sqrt{5} + 3 \cdot 2 \cdot \sqrt{5} - 2^2 \cdot \sqrt{5} = 6\sqrt{5} = 13'4164$

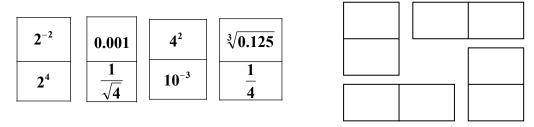
4) Calcular el valor de expresión adjunta, operando con potencias de exponente fraccionario y comparar el resultado con el obtenido directamente con la calculadora.

$$\frac{\sqrt{3^3} \cdot \sqrt[4]{5^5}}{\sqrt{3} \cdot \sqrt[5]{2^3} \cdot \sqrt[5]{2^2} \cdot \sqrt[4]{5}}$$

Solución

$$\frac{\sqrt{3^3} \cdot \sqrt[4]{5^5}}{\sqrt{3} \cdot \sqrt[5]{2^3} \cdot \sqrt[5]{2^2} \cdot \sqrt[4]{5}} = \frac{3^{\frac{3}{2}} \cdot 5^{\frac{5}{4}}}{3^{\frac{1}{2}} \cdot 2^{\frac{3}{5}} \cdot 2^{\frac{2}{5}} \cdot 5^{\frac{1}{4}}} = \frac{3^{\frac{3}{2}} \cdot 5^{\frac{5}{4}}}{3^{\frac{1}{2}} \cdot 2 \cdot 5^{\frac{1}{4}}} = \frac{3^{\frac{3}{2}} \cdot 5^{\frac{5}{4}} \cdot 3^{-\frac{1}{2}} \cdot 5^{-\frac{1}{4}}}{2} = \frac{3 \cdot 5}{2} = 7'5$$

5) Coloca las fichas de dominó en el diagrama de al lado.



6) Calcula la diagonal de un rectángulo cuyos lados miden 12 y 10 cm. Expresa el resultado con dos decimales.

Solución

$$d^2 = 12^2 + 10^2 = 244$$
 \Rightarrow $d = \sqrt{244} = 15'62 \text{ cm}$

7) Calcula el área de un triángulo equilátero cuyo lado mide 10 cm. Expresa el resultado con tres cifras decimales.

Solución

$$A_T = \frac{10 \cdot h}{2}$$
 $10^2 = h^2 + 5^2$ $h = \sqrt{100 - 25} = \sqrt{75} = 8'66 \text{ cm}$ $A_T = \frac{10 \cdot 8'66}{2} = 43'3 \text{ cm}^2$

8) Calcula las siguientes expresiones utilizando el método que creas conveniente:

$$a) \left(5\sqrt{2} + 4\sqrt{3}\right) \left(5\sqrt{2} - 4\sqrt{3}\right) \qquad b) \frac{\sqrt{2}}{2 + \sqrt{2} - \sqrt{3}} \qquad c) \left(0'05 \cdot 10^{-3}\right)^{-2} + \left(10^{3}\right)^{3}$$

$$d) \frac{(60000)^{3} \cdot (0'00002)^{4}}{100^{2} \cdot (72000000) \cdot (0'00002)^{5}} \qquad e) \left(\frac{1}{a^{2}b} : \frac{b^{5}a^{-1}}{a^{-1}b^{3}}\right)^{3} \qquad f) \left[\frac{\frac{a^{9}}{a^{2} : a^{5}}}{\left(\frac{a^{7}}{a^{2} \cdot a^{3}} : \frac{a^{4}}{a^{6} \cdot a}\right)^{3}}\right]^{2}$$

Soluciones

a)
$$(5\sqrt{2} + 4\sqrt{3})(5\sqrt{2} - 4\sqrt{3}) = (5\sqrt{2})^2 - (4\sqrt{3})^2 = 25 \cdot 2 - 16 \cdot 3 = 50 - 48 = 2$$

b)
$$\frac{\sqrt{2}}{2+\sqrt{2}-\sqrt{3}} = \frac{1'4142}{1'6821} = 0'8407$$

c)
$$(0'05 \cdot 10^{-3})^{-2} + (10^3)^3 = (5 \cdot 10^{-2} \cdot 10^{-3})^{-2} + 10^9 = 5^{-2} \cdot 10^4 \cdot 10^6 + 10^9 = 5^{-2} \cdot 10^{10} + 10^9 = 1'4 \cdot 10^9$$

$$d) \; \frac{(60000)^3 \cdot (0'00002)^4}{100^2 \cdot (72000000) \cdot (0'00002)^5} = \frac{(6 \cdot 10^4)^3 \cdot (2 \cdot 10^{-5})^4}{(10^2)^2 \cdot 7'2 \cdot 10^7 \cdot (2 \cdot 10^{-5})^5} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^4 \cdot 10^{-20}}{10^4 \cdot 7'2 \cdot 10^7 \cdot 2^5 \cdot 10^{-25}} = \frac{6^3 \cdot 10^{12} \cdot 2^5 \cdot 10^{-25}}{10^4 \cdot 10^5 \cdot 10^5 \cdot 10^5} = \frac{6^3 \cdot 10^{12} \cdot 2^5 \cdot 10^{-25}}{10^5 \cdot 10^5 \cdot 10^5} = \frac{6^3 \cdot 10^{12} \cdot 2^5 \cdot 10^{-25}}{10^5 \cdot 10^5 \cdot 10^5} = \frac{6^3 \cdot 10^{12} \cdot 2^5 \cdot 10^{-25}}{10^5 \cdot 10^5 \cdot 10^5} = \frac{6^3 \cdot 10^{12} \cdot 2^5 \cdot 10^{-25}}{10^5 \cdot 10^5 \cdot 10^5} = \frac{6^3 \cdot 10^{12} \cdot 10^{-25}}{10^5 \cdot 10^5} = \frac{6^3 \cdot 10^5 \cdot 10^{-25}}{10^5 \cdot 10^5} = \frac{6^3 \cdot 10^5 \cdot 10^5}{10^5 \cdot 10^5} = \frac{6^3 \cdot 10^5}{10^5 \cdot 10^5} = \frac{6^3 \cdot 10^5}{10^5 \cdot 10^$$

$$\frac{6^3 \cdot 2^4 \cdot 10^{-8}}{7'2 \cdot 2^5 \cdot 10^{-14}} = \frac{6^3 \cdot 2^{-1} \cdot 10^6}{7'2} = 1'5 \cdot 10^7$$

$$e)\left(\frac{1}{a^2\,b}:\frac{b^5\,a^{-1}}{a^{-1}\,b^3}\right)^3=\left(\frac{a^{-1}\cdot b^3}{a^2b\cdot b^5\,a^{-1}}\right)^3=\left(\frac{a^{-1}\cdot b^3}{ab^6}\right)^3=(a^{-2}\cdot b^{-3})^3=a^{-6}b^{-9}$$

$$f)\left[\frac{\frac{a^9}{a^2:a^5}}{\left(\frac{a^7}{a^2\cdot a^3}\cdot\frac{a^4}{a^6\cdot a}\right)^3}\right]^2 = \left[\frac{\frac{a^{14}}{a^2}}{\left(\frac{a^7\cdot a^6\cdot a}{a^2\cdot a^3\cdot a^4}\right)^3}\right]^2 = \left[\frac{a^{12}}{\left(\frac{a^{14}}{a^9}\right)^3}\right]^2 = \left(\frac{a^{12}}{\left(a^5\right)^3}\right)^2 = \left(\frac{a^{12}}{a^{15}}\right)^2 = (a^{-3})^2 = a^{-6}$$

Problemas propuestos con soluciones

1) Expresa en forma de una sola potencia de exponente fraccionario:

a)
$$\sqrt{x} \sqrt[3]{x}$$
 b) $(\sqrt[3]{x^2})^5$ c) $\sqrt{\sqrt[3]{\sqrt[5]{x}}}$ d) $x^3 \sqrt{x} \sqrt[3]{x}$ e) $\sqrt{\sqrt[3]{4\sqrt{x^3}}}$ f) $\frac{x^2}{\sqrt[3]{x}}$

$$\mathbf{b}) \left(\sqrt[3]{x^2}\right)^{6}$$

c)
$$\sqrt[3]{\sqrt[5]{x}}$$

d)
$$x^3 \sqrt{x} \sqrt[3]{x}$$

e)
$$\sqrt[3]{\sqrt[4]{x^3}}$$

f)
$$\frac{x^2}{\sqrt[3]{x}}$$

Soluciones a)
$$x^{\frac{5}{6}}$$
 b) $x^{\frac{10}{3}}$ c) $x^{\frac{1}{30}}$ d) $x^{\frac{23}{6}}$ e) $x^{\frac{1}{8}}$ f) $x^{\frac{5}{3}}$

a)
$$x^{\frac{5}{6}}$$

b)
$$x^{\frac{10}{3}}$$

c)
$$x^{\frac{1}{30}}$$

1)
$$x^{\frac{23}{6}}$$

e)
$$x^{\frac{1}{8}}$$

f)
$$x^{\frac{5}{3}}$$

Efectúa las operaciones con radicales simplificando los resultados todo lo que puedas.

$$a) \frac{\sqrt[6]{xy^4}}{\sqrt{xy}} \cdot \sqrt[3]{\frac{x^2y^3}{xy}}$$

b)
$$\sqrt{12} - \sqrt{75} + \frac{3}{2}\sqrt{27}$$

c)
$$\frac{\sqrt{xy} \cdot \sqrt[3]{x^2 y^2}}{\sqrt[6]{x^3 y^7}}$$

a)
$$\frac{\sqrt[6]{xy^4}}{\sqrt[4]{xy}} \cdot \sqrt[3]{\frac{x^2y^3}{xy}}$$
 b) $\sqrt{12} - \sqrt{75} + \frac{3}{2}\sqrt{27}$ c) $\frac{\sqrt{xy} \cdot \sqrt[3]{x^2y^2}}{\sqrt[6]{x^3y^7}}$ d) $2\sqrt{80} + \frac{1}{2}\sqrt{45} - \sqrt{500}$

e)
$$\sqrt[4]{5^3} \sqrt[12]{3^2} \sqrt[3]{5^2}$$

e)
$$\sqrt[4]{5^3} \sqrt[12]{3^2} \sqrt[3]{5^2}$$
 f) $\frac{3}{\sqrt[4]{2^2}} - \frac{\sqrt{2}}{2 - \sqrt{5}}$ g) $\frac{ab\sqrt{a}}{\sqrt[3]{ab^2}}$

$$g) \frac{ab \sqrt{a}}{\sqrt[3]{ab^2}}$$

Soluciones

a)
$$y^{\frac{5}{6}}$$

$$b) \frac{3\sqrt{3}}{2}$$

c)
$$x^{\frac{2}{3}}$$

$$d) - \frac{\sqrt{5}}{2}$$

a)
$$y^{\frac{5}{6}}$$
 b) $\frac{3\sqrt{3}}{2}$ c) $x^{\frac{2}{3}}$ d) $-\frac{\sqrt{5}}{2}$ e) $5^{\frac{17}{12}} \cdot 3^{\frac{1}{6}}$ f) 8'1120 g) $a^{\frac{7}{6}} \cdot b^{\frac{1}{3}}$

$$g) a^{\frac{7}{6}} \cdot b^{\frac{1}{3}}$$

- Escribe en notación científica los siguientes números:
 - a) 0'00000000000000002567432
- b) 1234567891234

c)
$$\frac{(2'31 \cdot 10^7)^2 \cdot (5'23 \cdot 10^{-3})}{(1'234 \cdot 10^{-9})^3}$$

- Soluciones
- a) $2'567432 \cdot 10^{-16}$
- b) $1'234567891234 \cdot 10^{12}$ c) $1'485183684 \cdot 10^{39}$

- 4) Se estima que la edad de la Tierra es aproximadamente cinco mil millones ce años mientras que el hombre lleva sobre la misma unos tres millones de años. Por otro lado, la edad el Universo se calcula en unos quince mil millones de años.
 - a) Expresa las cantidades anteriores en notación científica.
 - b) ¿Cuánto tiempo transcurrió desde que se creó la Tierra hasta que apareció el ser humano?
 - c) ¿Qué proporción de tiempo lleva el hombre sobre la Tierra desde que se creó ésta?
 - d) ¿Cuánto tiempo transcurrió desde el comienzo del Universo hasta que se creó la Tierra?
 - e) ¿Cuánto tiempo ha transcurrido desde que comenzó el Universo hasta que apareció el hombre sobre la Tierra? ¿Qué proporción de tiempo lleva el hombre sobre la Tierra comparado con la edad del Universo?

Soluciones

a) Tierra = $5 \cdot 10^9$ años Ser humano = $3 \cdot 10^6$ años Universo = $1'5 \cdot 10^{10}$ años

b) $4'997 \cdot 10^9$ años c) $6 \cdot 10^{-4} = 6$ diezmilésimas d) 10^{10} años

e) 1'4997·10¹⁰ años 2 diezmilésimas

5) En la siguiente tabla figuran una serie de datos relativos a la Tierra y a Júpiter.

	Tierra	Júpiter
Distancia al Sol	1 UA	5′203 UA
Diámetro	12756 km	144000 km
Masa	5′97610 ²⁴ kg	317'9 veces la de la Tierra
Volumen	108'321 · 10 ¹⁰ km ³	1300 veces el de la Tierra

- a) Sabiendo que 1UA = 150000000 km calcula la distancia de Júpiter al sol en metros. Expresa el resultado en notación científica.
- b) Escribe los diámetros de la tierra y de Júpiter en metros y en notación científica y compara ambas cantidades.
- c) ¿Cuál es la masa de Júpiter? Escribe el resultado en notación científica.

Soluciones

a)
$$d_{J-S} = 1'5 \cdot 10^{11} \text{ m}$$
 b) $D_T = 1'2576 \cdot 10^7 \text{ m}$ $D_J = 1'44 \cdot 10^8 \text{ m}$ $\frac{D_J}{D_T} = 11'2 \text{ veces}$

c) $M_J = 1'89977 \cdot 10^{27} \text{ kg}$ d) $V_J = 1'41 \cdot 10^{15} \text{ km}^3$

6) Ordenar los siguientes números indicando de cada número si es racional o irracional:

$$-0.5$$
; $\pi + 1$; 3 ; -0.67 ; 4.27 ; $-\frac{2}{3}$; $-\sqrt{2}$; 3.143 ; $\frac{\pi}{3}$; $\frac{2}{5}$; -0.674

7) Simplifica:

a)
$$\sqrt[5]{\frac{a^2b^2}{c^2}} : \sqrt{\frac{ab}{c}}$$
 b) $\frac{1 - \frac{\sqrt{2}}{4}}{1 + \frac{\sqrt{2}}{4}} + \frac{4\sqrt{2}}{7}$ c) $\frac{a+1}{3} \cdot \sqrt[3]{\frac{9}{a^2 + 2a + 1}}$

<u>Soluciones</u> a) $\sqrt[10]{\frac{c}{ab}}$ b) $\frac{9}{7} = 1'28571...$ c) $\sqrt[3]{\frac{a+1}{3}}$

8) Expresa como potencia
$$\frac{\sqrt[3]{4\sqrt{2}}}{8}$$

Solución
$$2^{-\frac{13}{6}}$$

9) Efectuar las operaciones siguientes:

a)
$$\left(\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}\right)^2$$
 b) $\left(2^{\frac{1}{3}} \cdot 2^{-2}\right)^{\frac{3}{2}} \cdot \sqrt{2}$ c) $\frac{18\sqrt{20} - 2\sqrt{45} - 5\sqrt{80}}{5\sqrt{5}}$ d) $\frac{\sqrt[6]{a^5 b^7}}{\sqrt[3]{a^2 b^3}}$

Solutiones a) $\frac{1}{6}$ b) 2^{-2} c) 2 d) $\sqrt[6]{ab}$

10) Racionalizar las siguientes expresiones:

a)
$$\frac{2\sqrt{3} + \sqrt{7}}{3\sqrt{7}}$$
 b) $\frac{5 - 2\sqrt{2}}{5 - 3\sqrt{2}}$ c) $\frac{2}{\sqrt[3]{2x^2y^3}}$ d) $\frac{x^2 - 1}{\sqrt[3]{x+1} \cdot \sqrt{x+1}}$

Solutiones a) $\frac{2\sqrt{21} + 7}{21}$ b) $\frac{5\sqrt{2} + 13}{7}$ c) $\frac{\sqrt[3]{4x}}{xy}$ d) $(x-1) \cdot \sqrt[6]{x+1}$

11) Escribir con un sólo radical cada una de las expresiones siguientes y a continuación expresa el resultado en forma de potencia de exponente fraccionario:

a)
$$\sqrt{x} \sqrt[3]{x^2}$$
 b) $\sqrt[3]{\sqrt{x}}$ c) $\sqrt{x} \sqrt{\sqrt{x}}$ d) $\sqrt[4]{\sqrt[3]{x} \sqrt{x}}$
Solutiones a) $x^{\frac{5}{6}}$ b) $x^{\frac{1}{12}}$ c) $x^{\frac{5}{8}}$ d) $x^{\frac{1}{8}}$

12) Efectuar las operaciones siguientes:

a)
$$(\sqrt{3} + \sqrt{2}) \cdot (2\sqrt{2} - 3\sqrt{3})$$
 b) $5\sqrt{x} + \sqrt{9x} - 3\sqrt{16x} + 12\sqrt{x - \frac{5x}{9}}$
Solutiones a) $-\sqrt{6} - 5$ b) $4\sqrt{x}$

13) Indica cuáles de las siguientes igualdades son correctas y en aquellas que no lo sean indica cuál es el verdadero valor y por qué.

a)
$$\sqrt{7} = 7^{\frac{1}{2}}$$
 b) $\sqrt{8} - \sqrt{2} = \sqrt{6}$ c) $\sqrt[3]{5^2} = 5^{\frac{3}{2}}$ d) $\frac{\sqrt{15}}{\sqrt{3}} = \sqrt{5}$ e) $\sqrt[5]{\sqrt{2}} = \sqrt[7]{2}$ f) $\sqrt[3]{7} \cdot \sqrt[5]{7} = \sqrt[15]{7}$ g) $17^{-\frac{2}{7}} = \sqrt{17^{-7}}$ h) $\frac{\sqrt{3} + \sqrt{6}}{\sqrt{3}} = 1 + \sqrt{2}$ i) $\sqrt{6} \cdot \sqrt[3]{6} = \sqrt[6]{6^5}$ Solutiones

14) Calcula el valor de la expresión: $5\sqrt{80} - 4\sqrt{45} + 3\sqrt{125} - 2\sqrt{180}$

 $11\sqrt{5}$ Solución

- 15) Calcula y simplifica: a) $\sqrt{50} + 3\sqrt{98} 2\sqrt{\frac{12}{25}} \sqrt{\frac{2}{36}}$ b) $\sqrt[4]{4} + \sqrt{8} \sqrt[6]{8} + \sqrt[4]{64} + \sqrt{\frac{9}{2}}$

 - <u>Soluciones</u> a) $\frac{775\sqrt{2} 24\sqrt{3}}{30}$ b) $\frac{11\sqrt{2}}{2}$
- 16) Escribir como un sólo radical la expresión $\sqrt[4]{9\sqrt{3\sqrt[3]{3}}}$

Solución

17) Calcular utilizando la calculadora la expresión $\frac{5'27' \cdot \sqrt[7]{7825} - 10^5}{6'21 \cdot 10^3 - \sqrt[4]{5'31} \cdot 10^{12}}.$

65'28930332 Solución

- 18) Efectúa las operaciones indicadas y deja el resultado en forma de potencia de exponente fraccionario:
 - a) $\frac{5^{\frac{-3}{5}} \cdot 25^{\frac{2}{3}}}{\sqrt[3]{125} \cdot 5^{\frac{-4}{5}} \cdot \left(\left(5^2 \right)^0 \right)^7}$ b) $\frac{2 \cdot \sqrt[4]{5^5} \cdot \sqrt{3^3} \cdot \sqrt{5}}{15 \cdot \sqrt{3} \cdot \sqrt[5]{2^3} \cdot \sqrt[5]{2^2} \cdot \sqrt[4]{5}}$

Soluciones: a) $5^{\frac{\circ}{15}}$ b) $5^{\frac{1}{2}}$

- 19) Simplifica las expresiones siguientes:

 - a) $\frac{\mathbf{x}^2 \cdot \sqrt[3]{\mathbf{x}} \cdot \sqrt{\mathbf{x}^3}}{\sqrt{\mathbf{x}} \cdot \sqrt{\mathbf{x}}}$ b) $\frac{5^{-\frac{3}{5}} \cdot \sqrt[3]{25^2}}{125^{\frac{1}{3}} \cdot 5^{-\frac{4}{5}}}$ c) $\left(\sqrt[3]{\mathbf{x}^2} + \sqrt{2}\right)^2$ d) $\frac{\sqrt[4]{27} \cdot \sqrt[3]{9}}{\sqrt[6]{9} \cdot 3^3 \cdot \sqrt{3}}$ Soluciones: a) $\mathbf{x}^{\frac{17}{6}}$ b) $5^{\frac{8}{15}}$ c) $\sqrt[3]{\mathbf{x}^4} + 2\sqrt[3]{\mathbf{x}^2} \cdot \sqrt{2} + 2$ d) 1

- 20) Haciendo uso de la calculadora, calcula el valor de las siguientes expresiones indicando las teclas que pulsas:
 - a) $\sqrt{250} \sqrt{200} \sqrt{50}$ b) $\sqrt[5]{32'725}$ c) $\sqrt{2'43 \cdot 10^{-6}}$ d) $\frac{10}{5 \sqrt[3]{2}}$

- e) $\sqrt[4]{9 \cdot \sqrt{3} \cdot \sqrt[3]{3}}$ f) $\frac{7}{3 \sqrt{2}}$ g) $\sqrt{8'1 \cdot 10^{-5}}$ h) $\sqrt[3]{3'375}$

- i) $\frac{5+\sqrt{2}}{7!2+\sqrt{5}}$ j) $(5-\sqrt{2})^{-4}$

Soluciones

- a) -5'4019
- b) 2'0090 c) 0'0015
- d) 2'6738
- e) 2'0800
- f) 4'4142

- g) $9 \cdot 10^{-3}$ h) 1'5 i) 0'6798
- i) 0'0060
- 21) Extrae todos los factores que sea posible de cada uno de los radicales:
 - a) $\sqrt[3]{-800}$
- b) $\sqrt[3]{-27 a^4 b^6}$ c) $\sqrt[4]{16 a^4 b + 32 a^5 b^2}$

Soluciones a)
$$-2 \cdot \sqrt[3]{100}$$
 b) $-3 \, a \, b^2 \cdot \sqrt[3]{a}$ c) $2 \, a \cdot \sqrt[4]{b + 2 \, a \, b^2}$

b)
$$-3ab^2 \cdot \sqrt[3]{a}$$

c)
$$2a \cdot \sqrt[4]{b + 2ab}$$

22) Marca con una cruz las respuestas correctas, haciendo aparte las operaciones.

	$\sqrt{3}$	3	$2\sqrt{3}$	$3\sqrt{3}$	$4\sqrt{3}$	$5\sqrt{3}$
$\sqrt{3} + \sqrt{3}$						
$\sqrt{27}$						
$\sqrt{3}\cdot\sqrt{3}$						
$\frac{3}{\sqrt{3}}$ $\sqrt{300}$						
$\frac{\sqrt{300}}{2}$						
$\sqrt{75}-\sqrt{27}$						
$\boxed{\left(\sqrt{3}+1\right)^2-\left(\sqrt{3}-1\right)^2}$						

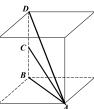
23) A pesar de las apariencias, el número $x = \sqrt{4 + 2\sqrt{3}} - \sqrt{4 - 2\sqrt{3}}$ es un entero. Compruébalo con la calculadora y elevando los dos miembros al cuadrado.

Solución 2

24) Suponiendo que $A = 9 \cdot 10^{-2}$, $B = 8 \cdot 10^{-3}$, $C = 3 \cdot 10^{-4}$ y $D = 5 \cdot 10^{5}$, calcular los números $\sqrt{\frac{A^2 \cdot B^3}{C^2 \cdot D}}$ y $(AB)^3 \cdot (CD)^4$ y expresarlos en notación científica. Comprobar el resultado con la calculadora escribiendo todos los pasos.

Soluciones a) $3'035786 \cdot 10^{-4}$ b) $1'889568 \cdot 10^{-1}$

- 25) El lado del cubo mide 3 cm. Halla las longitudes AB, AC y AD. (El punto C está en la mitad del lado AB). Si dos hormigas parten al mismo tiempo de A a la misma velocidad y una hace el recorrido ADCBAD y la otra ACA ¿Se encuentran alguna vez las hormigas en C o en A?



Soluciones a) $\overline{AB} = 3\sqrt{2}$ $\overline{AC} = 4'5$ $\overline{AD} = 3\sqrt{3}$

b) No. Es un nº irracional.

26) En un triángulo rectángulo, un cateto es igual a la mitad del otro cateto más 1. Expresar la longitud de la hipotenusa. Si el cateto mide 4 unidades, ¿cuánto mide la hipot.?

Soluciones a)
$$\frac{\sqrt{5x^2 + 4x + 4}}{2}$$
 b) 5

27) Calcular la longitud de la arista de un cubo inscrito en una esfera de 1 m de diámetro.

Solución
$$x = \sqrt{3}/3$$

28) Calcula el lado de un cuadrado inscrito en una circunferencia de radio 10 cm. El número que has obtenido, ¿es racional o irracional?

29) Calcula la altura y el área de un triángulo equilátero de 10 cm de lado y expresa el resultado con tres decimales exactos.

30) Imagina por un momento la Tierra como una bola de acero perfecta. La longitud de la circunferencia máxima mide 40.000 km. Una cuerda rodea la Tierra por el ecuador; se corta y se añade 1 metro. ¿Cuánto se separará la nueva cuerda de la superficie? Resuelve este mismo problema para una bola de acero cuya circunferencia máxima es 3 metros. Compara ambos resultados. ¿Depende el aumento del radio de la circunferencia?

31) Si envolviéramos la Tierra con un gran plástico, ¿cuánto debería aumentar la superficie del plástico si el radio aumentase 1 metro? ¿Depende este incremento de superficie del radio de la bola?

32) Calcula el volumen (en m^3) aproximado de la Tierra tomando como radio 6.500 km. y $\pi = 3'14$. Escribe este valor en forma científica con dos cifras decimales.

Solución
$$1'14 \cdot 10^{21} \text{ m}^3$$

33) Un cubo tiene 729 cm³ de volumen. Calcula su superficie.

34) Supongamos que al comienzo de nuestra era, es decir, con el nacimiento de J.C., la Tierra comienza a viajar a la velocidad de la luz. En su avance, perforará el espacio, formando un tubo cilíndrico de radio, el de la Tierra, y de longitud, la velocidad de la luz multiplicada por el tiempo que está trasladándose, que supondremos que será hasta el año 2000. Imaginemos que este cilindro es de oro macizo y queremos calcular su valor. Por otra parte, al mismo tiempo, en el año cero, colocamos 1 € al interés compuesto del 10 %. El capital que tendremos en el año 2000, ¿permitirá comprar el cilindro de oro macizo?

Datos: Radio terrestre = 6366 km., densidad del oro = $19'3 \text{ gr/cm}^3$.

Capital final = $6'100571 \cdot 10^{82} \in$, Precio del oro = $1200 \in /$ gr

Volumen del cilindro = Área de la base x altura

Solución Precio del cilindro = 5'579297938 · 10⁴³€

35) La distancia de la Tierra a Plutón es $5'8\cdot10^{12}$ metros. ¿Cuánto tiempo tardará en llegar un cohete que da una vuelta a la Tierra en una hora? $R_T=6370\,\mathrm{Km}$.

Solución 144913'449 horas.

36) Las ruedas delanteras de una locomotora tienen un radio de 0'45 m y las traseras 0'65 m. ¿Cuántas vueltas darán las primeras mientras las segundas dan 2600 vueltas?

Solución 3755' \$\hat{5}\$ vueltas

37) Se ha construido una esfera hueca de aluminio de un centímetro de grosor y cuyo radio exterior es de 15 cm. ¿Cuál es la masa de la esfera? (Densidad del aluminio = $2^7 \, \text{kg/dm}^3$).

Solución $M = 2'2716\pi \text{ kg}$

38) Calcular la apotema de un hexágono regular cuando el lado mide 4 cm.

Solución $2\sqrt{3}$

39) Averigua el perímetro de un rombo si las diagonales miden 12 y 16 cm.

Solución 40cm

- 40) Suponiendo la Tierra esférica y de volumen $1'1 \cdot 10^{12}$ km³, calcular su radio y su superficie. Solución r = 6403'7547 km y S = 515.322.669'5 km²
- 41) ¿Cuántas veces es menor la Luna que la Tierra si el volumen estimado de la Luna es de 21'9·10° km³ y el volumen de la Tierra es de alrededor de 1'08·10¹² km³? El diámetro de la Tierra es 3'67 veces mayor que el de la Luna. ¿Coincide con la proporción obtenida?

Solución ≅ 50 veces. Sí.

42) Cada una de las 9 esferas del Atomium, símbolo de la exposición universal de 1958 en Bruselas, tiene un volumen de 523'6 m³. ¿Podrías calcular el radio de estas esferas? ¿Cuántos litros cabrían dentro de una de ellas?

<u>Solución</u> $r \cong 5 \,\text{m}$ y 523600 litros

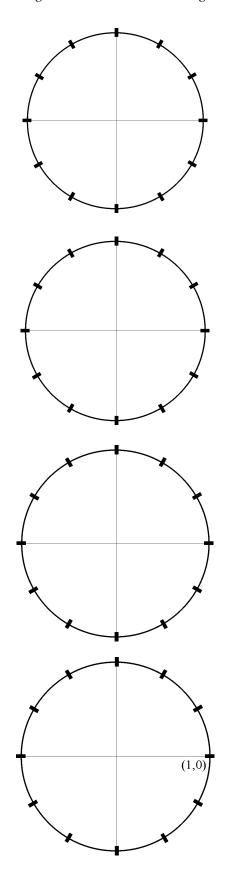
43) Simplificar extrayendo factores fuera del radical la expresión

$$\frac{\sqrt{\frac{9}{32}} + \sqrt{\frac{81}{128}}}{\sqrt[3]{\sqrt{7}} \cdot \sqrt{\frac{25}{2}}}$$

Solución $\frac{3\sqrt[6]{7}}{2^3}$

Relojes matemáticos

Colocar los siguientes números en el lugar correspondiente a las horas de un reloj.



te a las noras de un reloj.					
99 9	$9 + \frac{9}{9}$	$\sqrt{9}! - \frac{9}{9}$			
$9 + \frac{9}{\sqrt{9}}$	$9 - \frac{9}{\sqrt{9}}$	$9 - \frac{9}{9}$			
$9 - \sqrt{9} + 9^0$	$\sqrt{9} + \frac{9}{9}$	$\frac{9+9}{9}$			
$\sqrt{9}+9-9$	$\left(\frac{9}{9}\right)^0$	$\sqrt{9^2}$			
1010	0110	0100			
0001	1001	1000			
1011	0111	1100			
0010	0101	0011			
07	01	0A			
09	0C	02			
05	08	0B			
04	06	03			

Sabemos que el radio de la circunferencia es 1, y por tanto las coordenadas del punto situado en el lugar correspondiente a las 3 de la tarde son (1,0).

Calcula las coordenadas de los puntos situados en los lugares correspondientes a las demás horas del reloj, aplicando los conocimientos que tienes sobre triángulos rectángulos (el radio de la circunferencia es la hipotenusa de un triángulo rectángulo).